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The fluctuations of the order parameter in the Curie-Weiss version of the Ising 
model with random magnetic field are computed. Away from criticality or at 
first-order critical points they have a Gaussian distribution with random (i.e., 
sample-dependent ) mean, thermal fluctuations contributing in same order as the 
fluctuations of the field; at second- or higher-order critical points, non-Gaussian 
sample-dependent distributions appear, and the fluctuations of the fields are 
enhanced, dominating over the thermal ones. 
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1. I N T R O D U C T I O N  

An important  problem in equilibrium statistical mechanics is the deter- 
mination of how macroscopic observables fluctuate around their mean 
values for systems which are close to or  at their critical temperatures. 
Renormalization group ideas produced great advance both in the heuristic 
understanding and in the numerical computa t ion  of critical indices. Not  
much, however, is r igorously controlled for nontrivial systems, notable 
exceptions being explicitly solvable models. In this category fall the so- 
called Curie-Weiss  models, whose critical behavior has been studied in a 
series of  papers by Ellis and Newman.  (1 3~ They computed the statistics of 
large spin-block variables, showing in particular nontrivial (i.e., non- 
Gaussian)  fluctuations at second-order  critical temperatures. 

This paper is part  of  a program where we propose to investigate how 
quenched randomness  affects the Ellis and Newman  picture. We consider 
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the Curie-Weiss version of the random field lsing model, whose 
thermodynamics and phase diagram have been determined by Salinas and 
Wreszinski t4) (see also ref. 5), and we compute the fluctuations of the spin- 
block variable. These calculations show some remarkable new features as 
compared to the usual nonrandom model. At criticalities of second or 
higher order the contribution to fluctuations coming from the random field 
are enhanced so as to completely offset the contribution coming from 
thermal fluctuations; in particular the probability distributions obtained 
are not of the type described in refs. 1-3. Away from criticality both 
fluctuations contribute in the same order, implying that the fluctuations 
variable is non-self-averaging. The results concerning critical fluctuations 
correct erroneous statement made in a previous letter tSI announcing some 
of our results. 

This paper is organized as follows. In the remainder of this section we 
define the model. In Section 2 we state the limit theorems for thermo- 
dynamics and fluctuations, proofs being deferred to Section 3. The notation 
and proofs follow as closely as possible those of refs. 2 and 3, such that the 
improvements required by this more complex problem with the presence of 
randomness become clearer. 

1.1. The Model  

We consider a system of n sites. For each i=  !, 2 ..... n we define a 
(spin) random variable a,= _+1 and a (local) random field h~. These fields 
are supposed to be independent and identically distributed random 
variables, according to a measure in R, dr(h), which we shall denote by 
hi~  dr(h). A spin configuration a is defined as a function 

a : Z +  ~ { - 1 ,  +1} 

i ~ Z + - ~ t r i ~ { - 1 ,  +1} 

where { - I, + 1 }n denotes the Cartesian product of n copies of { - 12 + }. 
Of course, one defines a configuration of fields h in R ~ in the same 

way. 
For  each n = 1, 2 .... and fixed h, we state the probability of a configura- 

tion tr restricted to { 1 ..... n } as 

1 
p,,(tr, h) = - -  e -/~H,(~,.h) (1.1) 

Z,,(h) 

where fl is the inverse of the physical temperature and H,  is the so-called 
Hamiltonian function which characterizes the model in whose probability 
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properties one is interested. Z,(h) is just a normalization factor, the parti- 
tion function, given by 

Z.(h) = ~ e-/m.~,h) (1.2) 

In this paper we shall study the model with Hamiltonian 

- tr i - h/r i (1.3) /4.= ~ i ~  i=~ 

with J >  0 describing the (ferromagnetic) interaction between each pair of 
spins. 

2. MAIN RESULTS 

In this section we state our main results concerning both the 
thermodynamics and the fluctuations of the system. 

Let us first denote by (f2, ~((2),/~) the probability space on which h 
is defined. Here, # is the product measure induced by dr(h). 

To describe the thermodynamics, we must evaluate the free energy 

(2.1) 

where Z.  may be written as 

Z.(h) = ~ exp[ -flH,,(a, h)] 
a 

--(2it)1/2 dxexp ---~+[I ~ hiai+x 
I = 1  

\~--~] f dx exp[-nG~(h, x)] 

Here 

X 2 1 n 

G.(h, x ) = - ~ - -  n ~ In cosh[(flS)mx+flh,] 
i = |  

and use has been made of the identity 

exp~-=(2~)  m dxexp ---~+qx 

(2.2) 

(2.3) 
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It is important to stress that the function G,(h, x) is a different 
random variable defined on f2 for each n. Therefore, the proof that (2.1) 
may be obtained from (2.2) through the Laplace asymptotic method is 
somehow tricky and requires a careful procedure. This result may be stated 
as follows. 

T h e o r e m  2.1.  If  

f thl dr(h) < ~ (2.4) 

then 

f l f = l o g 2 +  inf {lim G,,(h,x)} ae[/~] (2.5) 
" , ~ R  t l - , , x ~  

For rest of this paper, we shall omit the factor log 2 in (2.5), since it 
plays no role. 

R e m a r k 2 . 2 .  By the strong law of large numbers, G.(h,x) 
converges ae[/~] to 

x2 f dv(h)In cosh[(flJ)l/2x +flh,] O(x)= T -  (2.6) 

for every fixed x. There may then exist a set B x c (2, possibly depending on 
x and with # (Bx)=0 ,  such that for some h~Bx the convergence would 
not hold. Therefore, to ensure that the free energy is obtained ae [# ]  in 
(2.5), one must also prove that /~(0x Bx)=0.  A related result for the 
limiting Gibbs states exists, (6) but here we need a stronger control on the 
randomness in order to analyze fluctuations. 

Given a function G(x), let us characterize some properties of its global 
minima. Let {x* }~= 1 be the set of the ct global minima of G(x). If a Taylor 
expansion holds around each minimum such that 

(x  - x*)2k'  
G(x)=G(x*)+Oi - - + o [ ( x - x * )  2k'] as x-*x* 

(2ki)! 

we shall call k i -k i (x*)  the "type" and 0i-O~(x*) the "strength" of the 
minimum x*. 

The number ~ of global minima, and their coordinates, types, and 
strengths, will be functions of the physical parameters fl and J, and also of 
the measure dv(h) (depending, for instance, on its variance). 
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Typical cases (4) for the structure of global minima are: 

(a) Paramagnetic phase (with one global quadratic minimum): ~ = 1, 
k = l .  

(b) Ferromagnetic phase (two global quadratic minima): ~ = 2 ,  
k i=l ,  i =  !, 2. 

(c) First-order phase transition (several global quadratic minima): 
�9 > l , k , . = l , i = l , 2  ..... ~. 

(d) Second-order phase transition (one global minimum): ~ = 1 ,  
k = 2 .  

(e) Tricritieal point (one global, also nonquadratic minimum): ~ = 1, 
k = 3 .  

After these general remarks, we may turn to the limiting theorems. Let 
us define the random variable 

A,(a, y )  - S,• ( 2 . 7 )  
/,/I -~  

for any a and 7 real. 
The main ingredient of our central theorems will be the following 

lemma, which relates the probability density of A,,(a, y) with lhe function 
G,(h, x). 

Lemma 2.3. Let W be a random variable independent of S,,, dis- 
tributed according to a Gaussian of mean zero and variance 1, N(0, 1), 
which we denote by W,-~ N(0, 1). Then 

W 
(lIj)~/2n~/2 

ds' exp{ -nG,,[h, ([IJ)'/Z(s/n~'+ a)]  } 
.~ + A,,(a, y) S ds exp{ -nG,,[h, ([3J)'/2(s/n~'+ a)] } (2.8) 

Remark 2.4. The random variable will not contribute to the right- 
hand side of (2.8) if 7 < 1/2. 

What we will do is study whether the right-hand side of (2.8) 
converges weakly to some probability measure as n --+ oo. This implies the 
control of the asymptotic convergence of integrals of the type 

f d~ t(s) exp{ -nG,Eh, (flJ)m(s/n~ + a)]  } (2.9) 

where t(s) is some arbitrary bounded function. Because the Laplace 
asymptotic method is shown to be valid, roughly speaking, one must 
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control the expansion of G,(h, x) in the neighborhood of each of its global 
minima together with the limit n ~ oo. 

Let {x*}~= l be the set of the global minima of G(x). It is easy to 
verify that the physical magnetization m~ will be given by 

x,* 
mi = (flj)l/z (2.10) 

Now the study of fluctuations is very simple. Just taking a = x*/(flJ) ~/2 
in Lemma 2.3, we should be able to see for what values of y this leads to 
a probability density for the fluctuation variable. 

Doing so, some subtle technical difficulties will arise in the control of 
(2.9) related to the fact that the value of s around which the function 
G,,(h, x) must be expanded has a nontriviat dependence on n. 

To avoid these difficulties, we consider a sequence { xl "~ } ~= i of minima 
of G.(h,x), such that each xl " l ~ x *  as n ~  ~ ,  for every i=  1, 2,...,~. 
Therefore, (2.8) may well give us the asymptotic probability measure of 
A.(xl."~/(l~J)l/2, y) by expanding G,,[h, ([],J)l/2(s/n'/+xl"~/(/~J)l/2)] around 
S = 0 .  

This is indeed the case, and a Gaussian will always arise as stated in 
the following result. 

L e m m a  2.5. For each x*, i =  I,..., ct, suppose there is a sequence 
~-'i~ ~c,,I }~'=1 of minima of G,(h, x) such that each ._,x! "~ --+ x* as n ~ oo. Also, 
let ki be the type of x*. 

Then, with 7J = ki / [2(2k i -  1)], the following limiting behavior holds: 

(a)  0~= 1, 

lim A~ \(flj)l/2, r ~exp - f l J  ds . ~  LG~Zk)(X.)[vk(h)]Ek_2 6k, I 

(b) ~>  1. There exists an A =-A(x*) such that for every a ( 0 < a < A )  

11 x!") ) 1 " lim A. ~ ,  S. < a 
n - - ~  \ ( f l  ) n ( M )  112 

,--exp { -RJ[ - .  (2ki- 2)' l 2 }  ds " 
," LG~2k,~(x.)Evk,(h)]2k,.-2 6~,,Ij -I 

Here vki(h ) is a random variable defined on I2, distributed as 

Vk'(h)~s2k'-2exp -- L(2~- -  i~.1 ~ 1  i 2 ds (2.11) 
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with 

t72(1 ) =  flJ( ,J  dr(h)tgh2[(flJ)l/2x * + flh] 

R e m a r k  2.6. The 6k,.1 in the variance of the Gaussian distribution 
is due to the random variable W in (2.8). 

Of course, the asymptotic probability measure of An(x(')/(flJ) 1/2, 7) is 
not our aim. We would like to know that of An(x*/(flJ) 1/2, 7). The way to 
get it is now clear. We must control the asymptotic convergence of x (') to 
x* as a random variable. 

Indeed, x ~'~ satisfies the equation 

G',(h, x ~')) = 0 

From (2.3) this means that x ~'~ may be written as the sum of clearly 
dependent random variables 

X t')---(flJ)l/2 ~, tgh[(flJ) 1/2x(')+flhi] 
n i=l 

Now, for sequences like those in Lemma 2.5, it is possible to prove 
that x~ "~ converges to x* in the following way: 

Lemma 2.7. Let 6i= [2 (2k i -  1)] z. Then, in distribution 

n~ as n ~  (2.13) 

with vk,(h) distributed as in (2.11) and (2.12). 
Lemma 2.7 describes the sample driven fluctuations of the order 

parameter: they are stronger than (if k > 1) or of the same order as (if 
k =  1) the purely thermal fluctuations computed in Lemma 2.5. In fact, 
with mi given by (2.10) and ~'i = 1/2(2k~-1), i.e., Y~=~i (as given by 
Lemma 2.7!), we compute the limiting distribution of A,,(m~, "f~): 

Theorem 2.8. Let ~ be the number of global minima of G(x). 
Then: 

(a) I f ~ =  1, 

I rk(h)  if k >  1 

lim~ A , , ( m , , , i ) = |  . { u,(h) 1 ( 1 1) if k - 1  

where ul ~ N(0, a2(I )), with ~2(1 ) and vk(h) defined in (2.11 ) and (2.12). 
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(b) I f ~ >  1, there is an A = A ( x * ) > 0  such that for every a e  [0, A], 

( x,, ): s,, x,, 
nli ~ _ n (flS)/2 

< a  

~ N ( u j ( h )  1 1 

with ki-- I, i = 1, 2 ..... e. 

One should notice that the two parts of the theorem refer, respectively, 
to situations where the minimum is nondegenerate (pure phase) and 
degenerate (coexisting phases). The result in (b) reproduces the result 
in ( a ) j u s t  by conditioning the finite magnetization m~=S,/n  to a 
neighborhood of one of the e equilibrium values. 

In both cases the fluctuations depend on h, i.e., on the configuration 
of the fields. Fluctuations are therefore said to be non-self-averaging. 

It is also interesting to compare our scaling 7 = 1/2(2k - 1 ) with that 
of Ellis and Newman, 7 = 1/2k. They only coincide at k = 1, or, in other 
words, in situations where the spin variables are weakly dependent, rT~ 
giving rise to 7 = I/2 and Gaussian probability distributions in the spirit of 
the central limit theorem. For strong dependence (k > I ), our value of 7 is 
less than theirs, meaning that strong dependence is in this case stronger 
than in deterministic models. 

3. PROOFS 

The strategy of the proofs is simple, though the proofs themselves are 
somehow long. We first establish the Laplace asymptotic method for the 
partition function (Theorem 2.1 ). In order to do so, we state in Lemma 3.1 
some conditions to have sufficient control on a general random function of 
the kind of G,(h, x). 

Lemma 3.2 will assure the existence of at least one subsequence of 
minima of these functions converging to each of the minima of the limiting 
function, just in the spirit of the hypothesis of Lemma 2.5. On the other 
hand, if one defines a partition function Z,(h) like (2.2) and a free er~:~r~y 
f like (2.1) for these general random functions of the kind of G,(h,x), 
Lemma 3.3 shows that in the integral defining Zn(h) only the neighborhood 
of those minima described in Lemma 3.2 will contribute in the limiting 
process to obtain the free energy. After that, we finally can prove the 
Laplace formula for these general functions in Lemma 3.4. 

The proof of Theorem 2.1 will then only require to show that Gn(h, x) 
satisfies the conditions in Lemma 3.1. We shall then need the result of 
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Lemma 2.7 describing how the minima of G,,(h, x) converge to the minima 
of G(x), which therefore must be proved before Theorem 2.1. And this will 
do for the thermodynamics. 

With respect to the fluctuations, we will first prove Lemma 2.3, which 
relates the function G,(h, x) with the probability distribution of the fluctua- 
tions. This result, together with the Laplace asymptotic method derived 
before, leads to the proof of Lemma 2.5, which describes the asymptotic 
probability distribution of fluctuations around the mean magnetization of 
a finite-size system. Finally, our main results as stated in Theorem 2.8 come 
as an immediate consequence of the combination of Lemmas 2.5 and 2.7, 
and our proofs will be finished. 

Lemma 3.1. Suppose we are given h ~ 2 ,  s~R,  and {F, (h ,s )} ,  a 
family of random variables in [2 w i t h / ' ,  infinitely differentiable in relation 
to s. Furthermore, let us assume that: 

There is an A c /2 ,  with A independent of s and /~(A)= 1, such (1) 
that 

0Jr.(h, s)  ~ f~j~(s  ) Vh ~ A 
F.~J~(h, s)  - OsJ 

uniformly on compacta of R, for j = 0, 1, 2 ..... with F ~~ = F. 

(2) There exists C(h)> 0, independent of n, and real z such that 

exp [ - F,(h, s) ] ~< C(h) exp( - s2/2 + ~ Isl ) (3.1) 

(3) We have 

I d l e  nh,.,) < ~ for Vh ~ A (3.2) 

Then there exists an e > 0 such that 

e"Xfvdse-"r"~h' ' )=O(e ..... ) as n ~  (3.3) 

where g=inf{F(s) :  s e  R} with V being any closed, possibly unbounded 
subset of R containing no global minima on F. 

Suppose furthermore that there is an integer/, real, positive p, and qi, 
i =  1, 2,..., a sequence 2~(h), 2z(h),..., 22/(h) of random variables in /2 with 
22t(h)>0, and a sequence {s,},~=l satisfying, for each j =  1, 2 .... 

r~.:~(h, s~ = ~ + o(n-qJ) as n ~  (3.4) 
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such that 

Defining 

qj= l - jp for j <. 21 

qj> l - j p  for j >  21 

BAh, s, s.) = F.(h, s + s.) - F.(h, s.) 

(3.5a) 

(3.5b) 

then there exists 6 > 0 sufficiently small, such that, as n ~ 0% 

- -  s. = ~ 2 j ( h ) ~ . + O k ~ j + o ( 1 ) P , ( s )  for nB, h, np, ./= t 

and 
s ) I s 21 

nB,, h,n,_,s . ~>~2zAh)(-~.t+P2(s' ) for !st <6n" 

Is[ < fin" 

(3.6) 

(3.7) 

where P~ and P2 are polynomials of degree 21 and 2 l -  l, respectively. 

ProoL From the uniformity of the convergence of ['~, for 
sufficiently large, there exists t: > 0 such that 

inf{ F,,(h, s ) : s~V}  >~inf{F(s): s~ R} +P.= g+e. 

Therefore, 

e"~ f v d s e  "r.lh.'~) <e"% ,. ~,,g+,:) fvdS e :'o~h,.~= O(e "'~) a s  n - - ,  : / .  

just by using (3.1), (3.2), and the dominated convergence theorem. And this 
suffices to prove (3.3). 

Once again, because of the uniformity of the convergence of F,~Jl(h, s,), 
there exists 61 > 0 such that for sufficiently large n 

BAh, 2l s: s , s . ) -  E /'.~J)(h,s.)~ =O(Isl zt+') for [s t<0,  (3.8) 
j = l  

Now (3.6) follows from (3.4) and (3.8). 
Moreover, from the identity 

:' [ ,/] r .  (h, s.) B.(h,~,~.)=rf~(h,s~ S.(h,~,s . ) -  E ~J~ 
j = l  

21-- 1 sj 
+ ~ Fn(J) J=, s.) 77 (h, 
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one immediately obtains 
321 

B.(h, s, s.) >. I'~2')(h, s.) ( ~ .  + B.(h, s, s . ) -  

2 1 -  1 S j 
+ 

j = l  

while for sufficiently small 62 > 0 

i .< 1 s 21 
O([s[ 2'+ )..~22,(h)(2l)--- ~ for Is1<62 

2l s j  

E r~J~( h, s , ) ~  
j = l  

(3.9) 

Now inequality (3.7) follows from (3.4), (3.8), and (3.9) with 6 =  
min(61, 62). I 

The next lemma assures that it is possible to approach each global 
minimum of F(s) by an infinite subsequence of minima of F,(h, s) with 
increasing values of n. On the other hand, Lemma 3.3 states that the result 
(3.3) will not change if one considers a sequence of sets V. containing none 
of these minima of F,(h,s) ,  instead of the set V. Therefore, the only 
relevant contribution to an integral over R as (3.3) will come from the 
sequence R -  V,, or, in other words, from integration in the neighborhood 
of the minima of F,(h, s) converging to the global minima of F(s). This is 
the key ingredient to prove in Lemma 3.4 the Laplace method for these 
integrals. 

Let so* ~ be the set of the �9 global minima of F(s) and {s ~''k~}~= 1 ~~  J i :  I 

the set of the A global minima of F~(h, s). Then we get the following result. 

L e m m a  3.2. Given hypothesis (1) in Lemma 3.1 and ~ > 0, for each 
i =  1 ~, theree is an infinite subsequence ~,'1",~' (with ni<n/~ ) such ' " '~  t " i  ~ j =  I I 

that sl ~,' E {s r ,j } and s ('j) ~ Be(s*) -- [s* - ~, s* + ~], converging there- 
fore to s*. 

ProoL If there is no such subsequence, then one can define ti as the 
largest n such that there is an s (") in Be(s*). Then, for every n > & 

inf{ [F~l)(h, s)l" s e  Be(s*)} -= g,.r (3.10) 

But since F~ l~(h, s*) converges uniformly to F " ) ( s * ) =  0, for arbitrary 
g > 0 there is no such that for every n > n o 

IV~(h, s*)l < e (3.11) 

Since e is arbitrary, it may be chosen such that e<g , , r  and 
no(e)>~. Then (3.11) contradicts (3.10), since s*~Br and so the 
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subsequence in the lemma must exist. Since this subsequence is contained 
in the compact set Br its convergence follows. | 

Given a subsequence like {sl"J)}~=l, we may build a sequence {.%,,} 
such that s,,i=st"'k), k being chosen such as to minimize Isl"J)-s~"'k)] for 
fixed i and n, with nj~< n < nj+~. Of course, by definition, s,j,e = sl "j). 

Given 0 satisfying 

O< O < O - m i n {  6, I s * -  s*l i ,~ j}  (3 12~ 

where 6 is the same as in (3.6) and (3.7), we define the n-dependent set 

V . = R - { s . , i - O , s . , : + O }  (3.13) 

and state the following result. 

L e m m a  3.3. With the hypotheses (1) (3) on l'~(h, s) in Lemma 3.1, 
there exists an c > 0 such that 

e"e[ dse "r"lh'~=O(e "") as n--*~:. (3.14) 
u V  n 

ProoL Since s,,i converges to s*, given o9>0, there exists no such 
that I s * -  s,,i] < ~o for every n > n 0. Therefore, taking ~o so small that 0 '=  
0 - o 9 > 0  and 0 " = 0 + o 9 < 0 ,  where O is defined in (3.12), we set 

V ' = R - { s * - O ' , s *  +O'} 

and 

v"=a-{s*-O",s* +O"} 

By construction, V " c  V. c V'. The use of (3.3) for V' and V" proves 
the lemma. | 

Now we are ready to state the main ingredient in the proof of 
Theorem 2.1. 

Lemma 3.4. Under the hypothesis of Lemma 3.1 and supposing 
also that F(s) has a finite number of minima (say ct) and that the sequences 
{s.a}.~ l, i = 1, 2 ..... 0t, satisfy (3.4), we then have 

lim - 1 In fR ds e -'r"~b' s) = g ae[~]  (3.15) 
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ProoL Using 0 and V. as in (3.13), 

eng fR ds e -nFn(h,s) 

=e'~[i~Is'iii'_+f dse-'r"(h's)+Iv dse -"ro'b's'] 

=eq'n' i~lrta' dsexp ~'~ 2j ( h ) j , = l  + 

+O(e  -'~') as n ~  

where q(n)=n[g-F,(h,s , )]=o(n) ,  and pi, li, and 2~ '~ are numbers 
S which, according to (3.4), we can associate with each sequence { ,,.i},= 1, 

i =  1, 2 ..... ~. In obtaining the last equality we have used (3.3), (3.6), and the 
dominated convergence theorem, valid due to (3.7) and Lemma 3.3. 

Multiplying the expression by e- 'e ,  taking its logarithm, and reversing 
its sign, one obtains (3.15). Since the only dependences in h are in the 
).~iJ(h), which do not contribute in the limiting process, the result is 
obtained ae[/~]. II 

Proving that the hypotheses in Lemma 3.1 are satisfied by G,,(h, x), 
one obtains (2.5) directly from (3.15) because of the definition of the free 
energy in (2.1). But first, as we explained in the beginning of this section, 
we must prove Lemma2.7. To do so, we shall apply the result of 
Lemma 3.2 to G,(h, x). Therefore, we must first prove that the hypothesis 
of this last lemma holds for such a function. This is stated in the following 
result. 

Lemrna 3.5. The hypothesis (l)  in Lemma 3.1 holds for G,,(h, x). 

Proof. We first verify the convergence ae[/~] for j =  0 and its unifor- 
mity on compacta of R. Then we will generalize this result for j >  0. To 
begin with, let us consider the simple probability measure 

dv(h) = �89 E6(h - H) + 6(h + H)] 

In this case ~o,,(h, x) may be rewritten as 

1 " 

+ In cosh[(flJ)~/2x- ~H] n i=l 
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The law of large numbers may now be applied to each of the sums, 
independently of x, and therefore #(I.Jx B x ) = 0  trivially. This argument 
may be used whenever hi are discrete random variables assuming a finite 
number of values. In the case of continuous random variables, however, it 
does not work, and the way out is the following: 

Since 

I~o.(h,x)-q~.(h, y)l<~lx-ylsuplq~.(h,z)l<.(BJ)mjx-y[, Vn (3.16) 
zEIR 

the {~o.(h, x)} form an equicontinuous sequence and therefore converge 
uniformly in compacta of R. Since the countable intersection of sets of 
measure 1 (in a probability space) has also measure 1, it is possible to 
choose A cs  with /~(A)= 1 such that if h~A, ~o.(h, x ) ~ o ( x )  for every 
x~Q. 

Since Q is dense in R, it is now easy to prove that for every h E A, 
q~,,(h, x) --* ~o(x) for every x e  R. From (3.16), given c > 0, there exists 6 > 0 
[6 < ~/3([JJ)l/z], so that I x -  Yl ~< 3 implies Itp.(h, x) - ~,.(h, y)[ ~< r./3 for 
every n. On the other hand, since Q is dense in R, there exists a y ~ Q such 
that I x -  Yl ~< 3 with x ~ R; and also there exists an integer no such that for 
every m and n larger than no, I~o,.(h, y ) -  ~0.(h, Y)I ~< e/3. Then 

I~o.,(h, x) - (p,,(h, x)l 

~< I~0.,(h, x)  - ~ o m ( h ,  y)l + I~o,.!h, y) - -  q ~ n ( h ,  y)l + [~o.(h, y) - ~o.(h, x)l ~< e 

and therefore the sequence converges for every x ~ R and h e A. 
To generalize this argument to any j th-order derivative of 9 . ,  one 

must simply show that ~o~J~(h,x) is bounded as q~.(h, x) in (3.16), and 
therefore {qr x)} is an equicontinuous family of functions. Then the 
argument is straightforward. 

To check this is quite easy, since from simple properties of the function 
coshx,  for each j E  {1, 2,...}, there are real positive numbers A(j), ak(j), 
and bk(j) with k e { 1, 2,..., 2 / -  i } such that 

x )  = (p:):%(x,h,) 
i=~ {cosh(~J)i/2x + ~hi] }~-~ 

for every n and j e { i, 2~._ } 

where 

23 I 

p/(x, hi) = A(j) + ~. {ak(j) sinhk[(/~J)x + hi] + bk(j) cosh[ (flJ)mx + hi] 
k = l  

x sinh k-  x [(flJ)U2x + h/] } 
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Since 

O< 
2J-  1 

pj(x,h,) <~A(j)+ ~ [ak(j)+bk(j)] 
{cosh[ (flJ)l/:x + flhi] 2J-1 k = I  

q~,J)(h, x) is bounded and the hypothesis is verified. | 

Proof of Lemma 2.7. Defining 

tp(x) = f dv(h) In cosh[(flJ)~/Zx + flhi] (3.17) 

x* must be a solution of 

x* = ~o~J~(x * ) (3.18) 

Because of Lemma3.5, we can use the results of Lemma3.2. 
Accordingly, there exists a sequence {nj}, j =  1,..., ~ ,  such that for every 
element n in this sequence and every i = 1, 2,..., ~ there is an xl ") converging 
to x* and satisfying 

x i n ) . =  (1) (n) ~o. ( h , x ~ )  (3.19) 

with ~o,(h, x) = x2/2 - Gn(h, X). 
Therefore, given r. >0,  there exists an no such that [xl")-x*[ < e  for 

every n > no. We can therefore expand ~o~J)(h, x) around x* and then make 
x - x , -  " ~"~, for each n > no, which gives 

2k: 1 

~o~.~(h, ("' - /'(h, x * )  x, ~ -  E ~~ '+ 
i = 0  

(hi X, -- X,-* )J 
j~ + O(Ixl "~ - x,*12k,) 

for [x~")-x*[<e (3.20) 

Since the central limit theorem ensures that 

uj(h) o ( 1 )  
x *  t = + as n ~ o o  (3.21) 

with uj(h) ~ N(0, O'2(j)),  where t r2( j )  > 0 is a well-defined variance, the use 
of (3.20) and (3.21) give us a simple equation in (xl " ) -  x*) that reads 

G(2~')(x*) (xl")-x*)2k'-l=ul(h)+(2ki- 1)! x/~ o (~nn)  as n--, oo (3.22) 
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Since from (3.21) u~(h) is nothing but 

u , (h)= l i r a  (flnJ) m {!  ~ tgh[(flJ)'/2x * + flhj] 
j =  1 

-- f dv(h) tgh[(flS)'/2xi * + flh]} 

a(1) will be given by (2.12). Defining now the random variable vk,(h) by 

(2ki- I)! ul(h) 
[v,,(h)] 2., '= G,2,,)(x?) 

one gets immediately (2.13) from (3.22), proving the lemma. | 

We now turn to the proof that G,(h, x) satisfies the hypotheses in 
Lemma 3.1, proving therefore Theorem 2.1. 

Proof of Theorem 2.1. The proof will be split in two parts. Since 
hypothesis (1) in Lemma 3.1 was already verified in Lemma 3.5, we must 
check only the following hypotheses for F,(h, s) = G,(h, s): 

(hi) Equations (3.1) and (3.2) hold. 

(h2) Also (3.4) and (3.5) are satisfied. 

Once these two points are proved, Lemma 3.2 immediately assures 
Theorem 2.1. 

Proof of (h T). This proof is rather simple. Noticing that 
In cosh[f(x)]  ~< If(x)l, one has 

n 

n ~ In cosh[(flJ)mx + flhi] 
i = 1  

1 
4 -  ~ I(flJ)mx + flh,I ~(flJ)V21xl +~ Z ihil 

ni=l h i =  1 
(323) 

It is then straightforward to see that 

X 2 

a,(h, x) >_.-~- ([3J) m Ixl -/~ sup{ ihil ) (3.24) 

which agrees with (3.1) if C(h) =exp[/~ sup{Ih,[ }] and z = (flj)m. 
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To check the validity of (3.2), we write 

f d s e x p [ - G ( s ) ] =  lim f dsexp[-G~(h ,s )]  
tl ~ oo 

x2 Ixl] 

which is finite because of (2.4). In the last expression the equality comes 
from the dominated convergence theorem valid because of (3.24), and the 
inequality comes from (3.23) and the law of large numbers. And so (hl) is 
proved. 

Proof of  (t72). Because of Lemma 3.5, we can use Lemma 3.2 to pick 
up xl ") obeying (3.19), for each fixed i. Considering the s, in (3.4) equal to 
xl "), we shall prove that (3.4) and (3.5) hold with I, = 1, 

ki 
p = p(k,) (3.25) 

2(2k~- 1 ) 

G<2k,)(x,)[vk,(h)]2~., 2 
2~(h) = 0 and 2~(h) - (3.26) 

2 k / -  2 

with v~,(h)defined in (2.11)for each i. 
This comes from the analysis of the convergence of Gl/~(h,.vl"~), 

now easy to do with the help of Lemma 2,7. For .]= I, (;l,~(h..vl"~)=0. 
by definition. For j >  1 we may proceed as in the proof of Lemma 2.7, 
expanding G<,])(h, x) around x* and then, for sufficiently large i1, calcu- 
lating the function at x = xl "). We get, as n ~ ~ ,  

(xl,,~_ x,,)r 
l'(J'gk X(J n,) E (~I(]+ P)(h {n) 

p=o P! 
(G~2k,)(x,)[vk,(h)]2k, .i u~ 

+) +~ 
G (j) x *  q- uj + o  1.~ ( ' " s  (s) if j>~2k i 

(3.27) 

at least for a certain infinite subsequence of values of n. Here we applied 
Lemma 3.2, the law of large numbers, and the central limit theorem, as in 
the proof of Lemma 2.7. 

From (3.27) one sees immediately that (3.4) and (3.5) are satisfied if 
l j= I for every i and the other parameters are chosen according to (3.25) 
and (3.26), which proves (h2) and therefore Theorem 2.1. II 

822/62/3-4-7 
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Now that we know how to obtain the free energy of the system, we 
shall turn to the problem of describing the fluctuations. As was said in the 
beginning of this section, the first step in that direction is to prove 
Theorem 2.3. 

Proof of Lemma 2.3. Let K,,(t) be the characteristic function of the 
random variable A,(a, g) defined in (2.7). Then 

K,,(t) = (exp[iA,,(a, ?)t]  ) 

-Z,,- 1__ ~ exp ~t n---~r ~ {" S,  - na t)  exp[ - flH,,(h, a)]  

l ( n ~ '/z 
-z,, fax 

x exp - - In cosh (flJ) U2x + flh~ 
n i ~ l  

+ 

where use has been made of the Gaussian transformation as in (2.2). 
Making the substitution 

X.~- 
i ,  

(flJ) '/2n' -r + _n~ + a (flj)u2 

both in the numerator and in the denominator of the expression above, one 
gets 

12 

_ ~ d~' exp(its) exp{ -nG,[h ,  ([~J)t/2(s/n;' + a)] } 
S ds exp{ -na, ,[h,  (flJ)'/2(s/n~'+ a)]  } 

which may be read as (2.8), and that proves the lemma. | 

As said in Section 2, the study of the fluctuations must be made iu two 
steps. The first is the proof of Lemma 2.5, which comes out quite simply 
with the help of Lemma 2.3 and 3.1. Actually, in the case of a single 
minimum (~= 1), what has to be proved is that for any bounded 
continuous function t(s) the following limiting behavior holds: 

ds t(s) exp{ -nG,[h ,  (flJ)U2(s/nr + x~")/(~J)l/2) ] } ~ f t(s) dt~(s) 
ds exp{ -nG,[h ,  ([3J)l/2(s/n~ + x~")/(~J)U2) ] } 
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where d#(s) is the suitably normalized Gaussian measure given in 
Lemma 2.5, 

exp{ -flJ[(2k-2)!/G~2kl(x*)[vk(h)] 2k 2_6k. 1] 1S2/2} ds 

+ l , ) -  r - -  - 6k. 1] s2/2} ds 

and with y = [ 2 ( 2 k -  1)]-  
According to Lemma 2.3, that is enough to prove that d#(s) is the 

probability measure of A,(xt")/(flJ) 1/~, y), if ~=  l. If there are more 
minima, the situation becomes slightly more complicated, as we shall see. 

Proof of Lemma 2.5. (a) ~ = 1. Taking 0 such that 0 < 0 = 6, with 6 
defined for G, just as it was defined for F ,  in (3.6) and (3.7), one has 

ftvl ~ On7/f[~J)l/2 

. + ~ ) J J  

By virtue of Lemma 3.3, there exists an ~: > 0 such that 

I/2 _~ + ~ = O(nu .... ) 

N o w ,  

a s  II ~ 90 

x' '  

flvl < On'/([IJ) 112 
eq(n) 

= e  ql') ds t(s) exp +o(1)  as n ~  

Here q ( n ) = n [ f - G , ( h ,  x~"))] =o(n),  and in the last step we used 
(3.6), (3.7), and the dominated convergence theorem. The term 22(h ) is 
given in (3.26) and the extra 6k,~ appearing in the result of Lemma 2.5 is 
due to the trivial contribution of the random variable W in Lemma 2.3, 
which happens only if k-= 1 (see Remark 2.4). The last expression proves 
therefore the statement of the first part of the lemma. 
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(b) ~ > 1. Let Z "  denote the sum over all configurations cr such that 
IS , In -  x("J/(flJ)J/21 < a, for each fixed j =  1, 2,.., ~. 

We then have to prove that there exists an A > 0 such that for each 
real r and any a ~ (0, A) 

Z'~ exp{i[(S,  -nxl")) /n ~ t} exp[ - f lH, (a ,  h)] ~ j" 
exp(its) +j(s) 

2 "  exp[ - f lH, (a ,  h)] J 
as n ~  oo (3.28) 

with ~{/given as in Lemma 2.5 and dpl(s ) being the probability measure 

L G(,n)(x? ) [ u----n(--~-) ],~, ~ 6k,~ as 

IIJ r (2k / -  2)! ' ' 

Proceeding as in the proof of Lemma 2.3, the left-hand side of the 
above limit becomes 

/i 

~ ' f d - v e x p ( - ~ ) e x p { , ~ , [ n / ~ + [ I h , + x ( [ ~ J ) U q a ,  } 

F nTJx (n) 3 
i 2L_.ZL__ t • exp L - (flj)ll2 J 

x ' dxexp - exp ,Z E ; h , + x ( ; J l " ~ ,  

With the substitution 

it (B j i l l  2 S In) 
X= ([3j)mnl_y + ._  . n ~j+ x/ 

this reads 

t z L 2 ~  I- nBJ/_~_~ j x! n) \3  
+ I ,l,dJ 

x (~' exp {t~ r'BJs L--~- + [~h,+xJ")([3J)mJa,})exp(its) 

x[f  ds exp [ - n - ~  (n~j + x- f~m "~] 
(/~])'/UJ 

{ r.s ....)...] })]--. x exp L n~j +flh,+xJ al 
o" l 1 

(3.29) 
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The next step to go ahead with the calculation is to eliminate the 
restriction on the sum over configurations. This is possible at the cost of a 
new restriction in the integration with respect to s. To this end, we shall use 
the transfer principle, for the proof of which we refer to the paper of Ellis 
et aL (3J It states the following: 

T r a n s f e r  Pr inc ip le .  There exists a number / i > 0  such that for 
every B ~ (0,/i), a e (0, B/2), and each real t, there is a &(a, B) > 0 such that 
a s  # 1 / - + 0 0 ,  

+ I t"?J 

( ( ~  r flJs '"> m]  })exp,i ts)  x ~ '  exp L n~, +/~h, + x i (M) at 
, , a "  l 1 

= [ Jl,.i < a,~j ds exp(its) exp - n  + 

Now, without the restriction, the sum over configurations may 
immediately be rewritten as 

exp In cosh t-- ~ + flh, + xJ"'(flJ) '/2 
/ 1 

and the right-hand side of the above expression becomes simply 

+_.2.2._._ ii,,<.a~j dv ex p ( its ) ex p { - n G~ I ( flJ ' l /2 ( -~s ( flj ) l /2 ] j j x !" ) "~ ] "( 

+ O(exp(-n6,7/)  ) 

If one chooses B < O  [with 0 defined as in (3.12)], the convergence 
of this integral is as straightforward as the one in the first part of the proof 
of this lemma. Using the result from the transfer principle both in the 
numerator and in the denominator of (3.29), and noticing that 
exp(t2/2[3Jn ~ 2~) is nothing but the characteristic function of W in 
Lemma 2.3, one easily gets (3.28) and therefore the lemma is proved by 
taking A = 0/2. II 

Now we can finally prove our main result in a very simple way. 
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/I 

n 

with 

Proof o/Theorem 2.8. Lemma 2.5 ensures that 

xl"' 
(flJ) I/2+--:+~ ~'') foreach i = 1 , 2  ..... 

1 
~ N (0, ~-) [ ( 2 ~ ( h ) )  

One the other hand, from Lemma 2.7 one has 

- -  + + o(n [2~2k, 
( f l j ) , / 2 -  (flj)~/2 nr2r ,)1 

as n ~ o o  (3.30) 

I)l ~) 

for each i =  l, 2 ..... ~ as n ~ o o  (3.31) 

Using (3.31) in (3.30), and remembering that 7i is given by (3.25), we 
get our fluctuation variable: 

S,, .v* ~ vk, as n *'~ (flJ) I/2-nk'/rz(2k'-~)l+ n [2(2ki 11] I J C ~  [2(2k, 1)] !) ---e- 
I1 

Since for cr > 1 (3.30) holds for S,/n conditioned to a neighborhood of 
.vl"~(flJ) ',2, this establishes the theorem. ! 
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